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ON THE MOTION OF CHAPLYGIN'S SLEDGE* 

N.K. MOSHCHUK 

The plane motion of Chaplygin's sledge is studied. In his original 
studies of this non-holonomic system, Chaplygin /l/ assume that the 
support plane is horizontal, and used a reduction factor to reduce the 
problem to the study of a Hamiltonian system with two degrees of freedom 
and one cyclical coordinate [i.e., a completely Liouville integrable 
system). A smooth reversible replacement of the phase variables is used 
below for the reduction. The motion is studied in detail by the methods 
of Hamiltonian mechanics, and the motion on an inclined plane is studied 
by the averaging method. The problem was earlier studied in /2-4/ for 
certain constraints on the position of the sledge centre of gravity. 
Chaplygin's equations of motion on an inclined plane were integrated 
in /3/ on the assumption that the centre of gravity lies on a line through 
the blade and perpendicular to the blade. 

1. We consider the motion of a rigid body suppowted on a smooth inclined plane by a 
blade and two smooth roots (a "balanced" Chaplygin sledge), in a homogeneous field of gravity 
with acceleration 9. The oriented space of this 
written as the layer between two parallel planes 
/3/, i.e., M, = R’ x S’. 

system is three-dimensional and can be 
Rg, opposite points of which are identified 

Fig.1 



As the coordinates in M, we take the coordinates g, n of the blade A in the fixed 
coordinate system 'O&5, the plane O&n of which is the same as the support plane, the 
axis being directed along the line of steepest descent, while cp mod 2n is the angle of 
rotation of the blade about the AzjlOt; axis. We also introduce the coordinate system 
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AXY~ t rigidly connected with the sledge, in such a way that the AX axis is directed along 
the blade, and the Ay axis is parallel to the support plane, and the Axyz and Ognc co- 
ordinate systems have the same orientation. We will use the following notation in future: 

a, B9 6 are the coordinates of the sledge centre of gravity G in the connected coordinate 
system, m is the sledge mass, k is the radius of inertia of the sledge with respect to the 

&I] AZ axis, r = faa fkl is the sledge radius of inertia with respect to the Bz"[/Az axis 
(B is the projection of the point G onto the Ay axis) , and @ is the angle of the support 
plane to the horizontal (Fig.1). We assume throughout (unless otherwise stated) that a#O, 
The Lagrange function of the system (a smooth function on TM,) is a tangent fibering of M,. 
In the chosen coordinates It has the form /l/ 

L, = 'lzm {IE' - (a sin cp -+ fi cos (p)(p'12 -+- [n' + (cc cos cp - (1.1) 
p sin cp)cp'l" + k*q") i mg sin @ (E i_ cL cos m - p sin 9) 

We impose a non-integrable coupling on the system, i.e., the absolute velocity of blade 
A is directed along the Ax axis (along the blade), i.e., 

E’ sin cp - n' cos cp = 0 (1.2) 

It is clear from (1.1) and (1.2) that the system is a.non-,holonomic Chaplygin system 
and its equations of motion can be integrated in the form of Chaplygin equations independently 
of the coupling Eq.cl.2). Hence the equationsofthe system can be conveniently regarded as 
a mapping A:R+ M = R’ X SC MO, which satisfies in local coordinates in M the Chaplygin 
equations, in which the Lagrange function L takes account of the non-integrable coupling. 
Unfortunately, in E and IJJ coordinates , L has a singularity at COST = 0. 

Following Chaplygin /l/, it is better to start by introducing thequasicoordinateg by 

f' = g' cos cp, q' = q'sin cp (1.3) 

and then the quasicoordinate x = g- &L Notice that 

E' = (x' + i3m') cos cp (1.4) 

and q’ and x' are respectively the projections onto the Ax axis of the blade A absolute 
velocity and the centre of gravity G. Obviously, g or x along with rp no longer define the 
body position uniquely, but since L depends linearly on E, the equations of motion in the 
quasicoordinates x, cp /3/ will no longer contain E explicitly and can be considered in- 
dependently of (1.3). 

The Lagrange function L, which takes account of the coupling (1.31, and the corresponding 
Hamiltonian, have the form 

L = V2m (x’2 + P’p’*) + mg sin 0 (E + a co9 rp - p sin cp) (1.5) 

H = (2m)+ (pz + Fapm”) - mg sin 0 (f $ a cos w - fl sin 9) 0.6) 

The equations of motion in canonical form 

._ aH px . 
X-K=y’ px _;++r, ( r,s-$- ) 

aH p-3 cp’=aPcp= -..&t pm - ----_+rrs (rp-q) 

( afi 
~COSC~= -mgsinecosrp axEi at ~ $=amgsinesincp) 

which describe the motion of our non-bolonomic system, define the dynamic system in an 
invariant measure, specified by the density p = em (v 3 aTa). This invariant measure is infinite, 
The first two integrals are not sufficient for square summability. It seems that in general 
they are not known. The function If (the total energy of the system) is the first integral of 
system (1.7) if it is supplemented by relation (1.4). 

We know that a system with density p>O can be reduced to a system of density p = 1 
by the change of variable dz = p (xx)&. It is interesting that, when I3 = 0 this change of time 
along with the linear transformation of momenta p' = p(x)p reduces system (1.7) to the form 
of the usual Hamiltonian equations /l/. 

2. Wow let e =O. Then, Eqs.tl.7) have two first integrals H and I = pcevL and are 
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square summable. We introduce the quasicoordinate ICY by the relation /6/ 

x; _ TF',+" 

The Lagrange function (1.5) is then ($=x) 

J_ -z 'i,m ($'2 + &Wn2'2) 

and calculations show that the equationsofmotion in quasicoordinates JK, are /3/ 

d at, 8L -_=o TiT dn,‘-- “iTi 
(l---l, 2) 

(2.1) 

(2.2) 

(3.3) 

We can also write Eqs.(2.3) in the canonical form 

PI --. .- --aHidS,, n,' = ~~i~Pi (P, = dLi&ti') G‘+) 
w L= (Zm)_' (PIZ + ‘-Q-?Y%p2y (2.5) 

The formal procedure of introducing quasicoordinates can be interpreted as a smooth (with 
pip $; 0) reversible change of phase variables (x,9, px,pm) - (JQ, ~2. PI. Pd, which reduces Eqs. 
(1.7) to the form of ordinary Hamiltonian equations. It has the form 

nl-x, n, = ‘p + I’_‘[ pxp&?-vx + r-I sign (pxpe) arcsin (1 + 

Qp;'Ir*)-':*], PI-- Pm pz = psevX 

(2.6) 

0n the right-hand side of the expression for II% in (2.6) we have omitted the term 
-(Zyr)-*n sign px (which is necessary to ensure smoothness with respect to p,). since it has no 
effect on our future arguments. 

with ptp = 0 (I = 0) the required change is identical , since here again (1.7) have the 
form of Hamiltonian equations (as is also the case, incidentally, when y= 0). Notice that 
~6%. like cp,is an angular coordinate, i.e., ne mod 2s. 

Relations (2.6) specify a mapping of the phase space T*M(T*M is a cotangent fibering 
of PI) into itself. The transformed Hamiltonian (2.51 is a smooth function in T*M, while 
the corresponding Eqs.(2.4) describe the motion of our non-holonomic system. Thus we can 
choose the map (n,,n,, pl,pz) in the phase space FM in such a way that the phase flow 
trajectories (1.7) are mapped by the integral curves of the usual canonical Eqs.12.4). 

The Hamiltonian system (2.4) has two independent integrals in involution: H =h = CO& 
and pz = c = const and is therefore completely integrable. It can be reduced to a system with 
one degree of freedom. The reduced phase space is R2,while the reduced Hamiltonian is obtained 
from (2.5) byreplacing p2 by c. The domain of possible motions is not empty if h 20. with 
h = 0 only the equilibrium position, realized only when c = 0, is possible. The phase 
portraits ofthe reducedsystem are shown in Fig.2 forthe case when y>O (when y<O the 
portraits are obtained by symmetric mapping with respect to the vertical axis of the phase 
portraits in the case when r> 0). 

In the phase space T*M every connected component of the set u,,h of levels of the 
first integrals H and pe is diffeomorphic to the two-dimensional cylinder U&h cv S' X R' /7/. 

The canonical transformation of the phase space 

{x1, 3c2 mod 2x, pl, pa}-+ (w,, lua mod 2x, I,, 1%) 

(the identical transformation when p2 = O), given by 

P, /f-f= n,= --&ln[~r~ch(~~,)]~, n2=wd +*th(yw,) (2.7) 

I ~1 = 1, th (~~11, pa = 1, (1, > 0) ..__._--_----_- 

reduces the Hamiltonian (2.5) and the equations of motion to the 
form 

H = (Zm)-'I,* (2.8) 

w,' = m+I,, w,' = 0, I,' = 0, I,' = 0 (2.9) 

Note that transformation (2.7) is in essence a rectifying 
__-.---------- diffeomorphism of the Hamiltonian of a vector field with Hamiltonian 

(2.5). 
The variables 1,~ can be regarded as an analogue of the action- 

Fig.2 angle variables (here, the set of levels ofthe first integrals is 
not compact). The variables wl,wg mod 2n are the coordinates on 

the invariant cylinders I = const. It follows from (2.8) that the Hamiltonian of the system 
is degenerate: 
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Sqs.(2.9) are easily integrated: 

WI = o,t + WlOI % = %0 

I* = const, w*o = const, 

w,=Illm (i=1,2) 

To complete our study ofthe>motion of the Chaplygin sledge over a horizontal plane, 
write the expressions for transformation from the phase variables W, I to the variables 
x, cp9 PXY Pep 

x = - + In [-$rsch(yw,)]*, 'p =w, -b arcsinsch(vl) x 

sign [ZIth(ywl)l, px= Z,th(yw,), ~,=rl,sch(yw,)sign I, 

42.10) 

we 

(2.11) 

Substituting (2.10) into (2.111, we find the explicit time dependences of the variables 
x, cp, px, pep and their limiting values 

lim pq (t) = 0, lim cp (t) = wgO, lim px (t) = mw, sign a(t+ co) 

Notice also that limq'(t) = w,signa (t--too). 

(2.12) 

Consequently, in the course of time the sledge tends to uniform sliding along a straight 
line. The skate is then oriented in such a way that the centre of gravity G "leads" the 
blade A. 

We now compare the behaviour of the trajectories in the phase space when the latter is 
covered by different maps. 

It has been said that the levels of the first integrals pcoeVx = c and H = h cut out in 
the phase space {x,(p, px,pc} invariant manifolds Uc,h, which are diffeomorphic to one or more 
two-dimensional cylinders. The level c = 0, h>O is the union of two cylinders, i.e.,UO,h = 

z, u z_, 2,s 8_*R' x S'. The quantity x+(x_) is the manifold of sledge stationary motions. -- 
The sledge then moves uniformly with velocity 1/2hlm(--2hlm) along the line cp = const. We 

fix the set of energy levels H =h>O. This is the domain in the phase space between the two 
cylinders z+ and x_. It is stratified into two-dimensional phase cylinders u,, h (c E a). 
Any trajectory lying in U,,h(c# 0) tends as t-+ +oo (t+ -00) to a trajectory in Z+(X), if 
a > 0, and to a trajectory in X_(Z+) if a< 0. Thus the phase cylinders U,, are 
compressed into z+ as x++oo, or into X_ as x-+--00. 

In the phase space {n,,n,, pl,pa} the domain H = h>O is 
1, also stratified into two-dimensional cylinders, which, however, 

Vi 
are no longer compressed towards z+ as n,-++m (as distinct 
from the previous case, where lim pa(t) = 0 as t-+ co; here, 
pz = const). 

: 
3. Now let the angle 9# 0. In this case the equations 

-- -- 

Ix 

of motion (1.7) have two one-parameter families of solutions 

2% h, = {x' = (g sin O)t $ u,,, cp = 0) and 
a 

A_ = {x' = - (g sin g)t -i- uO, 
I 1 

____---I-- ___I 
w2 

cp = n} (u. = const), which correspond to the sledge sliding along 

In! 

the straight line of steepest descent with constant acceleration 
gsin 8. In the motion of A+ the centre of gravity is ahead of 

I 
the skate when a>0 and is behind it when a<O, while in 

I. the motion of A_ the centre of gravity is ahead of the skate 
when a<0 and is behind when a> 0. 

The remaining motions will be studied by the averaging 

Fig.3 method /8/, taking 0 as a small parameter (O<B<i). 
We write the equations of motion (1.7) in the variables 

11, Wl, ma 
I,' = e [th (ywl)cos cp - aar-' sch (yw,)sin cpl 
W ** z.z --eIlel [th (yw,)sin cp + ad'r sch (yw&os cpl 
wl’ = m-‘Z, + e (yIJ’ [cos cp + oa+ sh (yw&in cpl; 
ezmgsin0, (3 = sign(Z,) 

(3.1) 

In (3.1) we have to replace (I! by the appropriate expression of (2.11). The equation for 
1, is omitted, since it is not needed. 

In system (3.1), I,, wg are slow variables, and w1 is a fast variable. On averaging the 
right-hand sides for the slow variables with respect to the fast variable, we obtain the 
averaged system of equations (we preserve the previous notation for the averaged quantities): 

I,' = e cos w,, w,' = --e1,-'sin wl, (3.2) 
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Notice that the terms dependent on c disappear on averaging. 
The solutionsofthe averaged system approximate the slow variables with an error of order 

6 in a time interval of order 6-r. 
The averaged system has the integral 

1, sin 1~'~ = i, (X3) 

The phase portraits of system (3.2) are shown in Fig.3 (h>O). while analysis of the 
general solution of system (3.2) leads to the following limiting values: 

Lim sin z1'2 (1) = 0, lim I,' (t) = &a (t --> Mf (3.4) 

Hence it follows that the sledge will tend to descend along the line of steepest descent 
with constant acceleration gsin8, while orienting itself in such a way thatthecentre of 
gravity is ahead of the blade. Thus, to a first approximation in 8,all the solutions of 
system (1.7) tends to A+ if a >0 and to ,\_ if a <0 (only the solutions of A* axe an 
exception). 

Notice in conclusion that, when 0 = 0, a = 0, there is a connection between the "natural" 
phase variables 5, cp, pg, prp’ and the variables x,tp, p~.p~. To be more exact, transformation of 
the phase space 

reduces the equations of motion in the variables 5, tp, pg,pm' to the form (1.7). 

REFERENCES 

1. CHAPLYGIN S.A., Study of dynamics of non-holonomic systems, Gostekhizdat, Moscow-Leningrad, 
1949. 

2. CAHATHEOD-CRY C., Der Schilitten, 2. Angew. Math. und Mech., 13, 1933. 
3. NEIMARK YU.N. andFUDAYZV N.A., Dynamics of non-holonomic systems, Nauka, Moscow, 1967. 
4. EMEL'YANOVA I.S., On the dynamics of the Chaplygin sledge on an inclined plane, Problemy 

Mekhanikf Upravlemogo Dvizheniya, Perm', Isd-vo Penn. un-ta, 4, 1974. 
5. NEMYTSKII V.V. and STEPYANOV V.V., Qualitative theory of differential equations, Gostekhizdat, 

Moscow-Leningrad, 1949. 
6. ~~~CHUK N-K., On reduction of the eguations of motion of soms non-holonomic Chaplygin 

systems to Lagrange and Hamilton equations, PMM, 51, 2, 1987. 
7. ARNOL’D V.I., KOZLOV V.V. and ~ISRT~T A.I., Mathematical aspects of classical and 

celestial mechanics, Itogi nauki i tekhniki, Sovremennye problemy matematiki. Fundamental' 
nye napravleniya, VINITI, Moscow, 3, 1985. 

8. VOLOSOV V.M., Averaging in systems of ordinary differential equations, Usp. Mat. Nauk, 17, 
6, 1962. 

Translated by D.E.B. 


